[별지 제1호 서식]

스마트 생태공장 구축 사업 신청서

※엑셀양식(사업신청서) **작성필요**

- 엑셀 작성양식(1번째 시트) 중 56행 ~ 100행
- 엑셀 출력서식(2번째 시트) 중 1행 ~ 47행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음

스마트 생태공장 구축 사업 사업계획서

※엑셀양식(사업신청서) 자동작성

- 엑셀 출력서식(2번째 시트) 중 48행 ~ 95행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음

사 업계획요약

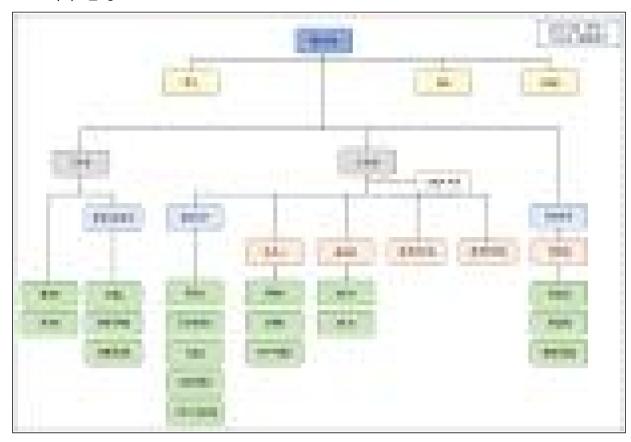
※엑셀양식(사업신청서) **작성필요**

- 엑셀 작성양식(1번째 시트) 중 2행 ~ 55행
- 엑셀 출력서식(2번째 시트) 중 96행 ~ 140행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음

제1장 신청기업 일반현황

1. 신청기업

※엑셀양식(사업신청서) **작성필요**


- 엑셀 작성양식(1번째 시트) 중 101행 ~ 126행
- 엑셀 출력서식(2번째 시트) 중 141행 ~ 164행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음

1.2. 최근 2개년 재무현황

※엑셀양식(사업신청서) 작성필요

- 엑셀 작성양식(1번째 시트) 중 127행 ~ 161행
- 엑셀 출력서식(2번째 시트) 중 165행 ~ 185행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음

1.3. 기구현황

제2장 사업 추진 내용

1. 사업 추진 배경

ㅇ 4차 산업혁명을 선도하는 저탄소형 친환경 제조공장으로의 전환 필요성

- 우리나라는 2050 탄소중립 달성을 위해 '기후위기 대응을 위한 탄소중립·녹색성장 기본법'을 제정하였으며, 국내 전산업에 걸친 에너지 효율 향상 및 저탄소발전을 위해 노력 중
- 당사는 4차산업 선도 및 발전에 기여하는 반도체용 PCB 생산 전문 기업으로, 제조공정에서의 에너지 비효율적 사용 및 자원낭비 등이 발생하고 있어 해당 부분에 대한 개선을 위해 지속적으로 노력하고 있음
- 따라서 본 사업을 통한 친환경 설비 및 시스템 구축을 통해 에너지 사용량절감 및 폐기물 발생 감축하여 저탄소형 친환경 제조공장으로의 전환을 이루고자 함

ㅇ 에너지 절감설비 도입을 통한 에너지 및 온실가스 저감으로 ESG 경영 선도

- 당사에서 사용중인 블로워는 상시(24시간 365일) 가동되는 설비로 전기 사용량이 높으며, 사업장 내 조명등의 노후화에 따라 에너지 사용량 및 유지 관리비용이 증가하고 있음
- 열교환기설치, 인버터형 블로워설치 , LED등 교체를 통해 에너지 사용량 및 온실가스 발생량을 절감하고 유지관리비용 개선

ㅇ 친환경 설비 도입을 통한 오염물질 배출 절감 및 환경안전시설 구축 필요

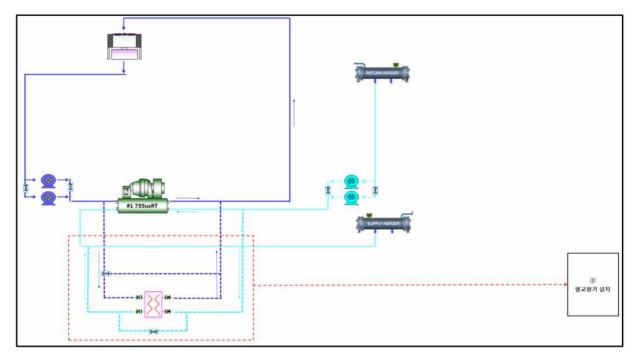
- 당사의 건조시설에서 미 배출된 총탄화수소가 작업장 내 존치되는 상황이 며, 총유기탄소 저감설비 도입 시 대기오염물질 배출량 감소 효과
- 현재 폐수처리시설에서 사용하는 약품 중 가성소다 희석용 교반기설치 및 폴리머 자동공급장치를 설치하여 약품 정량투입으로 수처리 효율 증대
- 또한 화학적 폐수처리 중 발생하는 슬러지는 함수율 저감을 위해 멤브레인 탈수시설 설치를 통해 폐기물의 함수율을 감소시켜 폐기물 배출량을 감소
- 최근 산업안전 이슈화로 인해 근로자 안전 확보 필요성이 증대되고 있어 비 상샤워기에 상수도 공급배관 별도 설치하여 안전한 작업환경조성 구축
- 오염방지설비의 최적 제어를 통한 에너지 효율 향상 및 운영비용 절감을 위해 스마트 모니터링 시스템 도입

2. 사업의 목표

※엑셀양식(사업신청서) **작성필요**

- 엑셀 작성양식(1번째 시트) 중 162행 ~ 268행
- 엑셀 출력서식(2번째 시트) 중 188행 ~ 230행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음
 - * 각 시설 분야별 목표 항목의 저감량 및 저감율을 산출하여 작성

3. 사업내용


- 3.1. 신청과제(시설) 개요
 - 3.1.1. 과제(시설)명: ESG경영과 4차 산업혁명을 선도하는 저탄소 친환경 사업장 구축
 - 3.1.2 과제(시설)개요

① 열교환기 설치 (에너지 회수·절감/온실가스절감)

오염물질 저감량	-	절감금액	101,994,120원/년	
에너지 절감량	849,951 kWh/년	온실가스 감축량	390.5 tCO₂eq/년	
시 설 개 요	• 열교환기 설치로 동절기 냉동기 가동시간 단축			
시설 필요성	• FREE COOLING SYSTEM (동절기 냉각탑 및 열교환기 가동) 도입으로 전기에너지 절감 및 온실가스 배출량 감소			

설치 전의	후 비교
전(前)	후(後)
설비없음	Fig.1 판정얼교환기의 일반구조 (General Structure)
-	설치 예정 열교환기
개선 전	전(前)
현 황	문제점
• 24시간, 365일 냉동기 가동으로 부하증가 • 냉각기 노후되어 효율감소 • 순환/공급배관 노후로 배관 내부 스케일로 유량공급 부족	 냉동기 노후 및 부식으로 효율 저하 24시간, 365일 가동으로 잦은고장 및 유지보수비 과다 (공장가동 중지 우려) 24시간, 365일 가동 전기에너지 및 온실가스 과다 발생
개선 호	克(後)
개선내용	기대효과
• FREE COOLING SYSTEM 운전 방식 도입 • 배관, 설비 일체형식으로 교체 • ICT와 연계하여 가동 조건 및 전력사용량 관리	• 동절기(3개월) FREE COOLING SYSTEM 구성으로 에너지 절감 및 온실가스 감축 • 현장 온습도 안정화 (생산성 향상)

- 동절기 운영 구성도(12월~2월까지 운영): FREE COOLING SYSTEM 도입 (냉각탑, 냉각수펌프, 냉수펌프 및 열교환기만 가동)

- FREE COOLING SYSTEM 도입

: 동절기에는 기존 설치 되어있는 냉각탑 1호기(3,900,000kcal/h)와 냉각수 펌프(585㎡/h), 냉수 펌프(456㎡/h)를 이용하여 냉동기가 아닌 자연외기를 활용하여 냉수를 만드는 시스템

: 동절기(3개월) 냉동기를 가동하지 않으므로 전기에너지 절감 및 온실가스 배출량 감소 효과

: 24시간, 365일 가동에 따른 냉동기 부품 고장 및 보수기간 부족 문제 해결

1. 열교환기 선정

동절기 현 사업장에서 실제 필요한 부하를 계산하기 위해 냉동기 가동률로 최소필요 용량으로 산정하였으며, 앞으로 설비 증설에 따른 냉방부하증가를 고려하여 냉수 펌프 최대 Capa 기준에 여유율을 두어 계산

① 최소용량 : 냉동기#2 (380usRT) + 냉동기 #3(253usRT) = 633 (usRT) = 1,914,192(kcal/h)

② 최대용량: 냉수 유량 [456(m²/h)* 1000 *5(°C)= 2,280,000(kcal/h)]

③ 선정: [최대*여유율(1.1) = 2,508,000kcal/h]

2. 시스템 적용 검토

냉각탑 1호기(3,900,000kcal/h)는 열교환기 용량(2,500,000kcal/h)보다 크기 때문에 열교환기 Hot Side 출구온도(5℃)유지는 확보가능

단, Cold Side 입구온도(6℃) 이하로 운전하기 위해선 외기 습구온도(5℃) 이하 조건이 반드시 필요하며, 기상청 자료를 활용하여 운전가능 시간을 분석하였을 때,

(12~3월) 4개월동안 운전이 가능한 것으로 확인하였으나, 보수적으로 3개월로 예상함

3. 시스템 구성 설비

구	구분		Differential Pressure
열교	열교환기		0.3 kgf/cm²
₩ ²	냉각탑		
1 U 7 L A	폄프	585*25m³/h*m	
냉각수	배관	300A	
111 人	펌프	456*22m³/h*m	
냉수	배관	300A	

4. 시스템 운전 조건

1) 0.75		0.000.000	17 1 /1	1]]][] 0][(1 0000DT)
1) 용량	•	3,900,000	Kcal/hr	냉각탑 용량(1,000CRT)
2) 형식	:	판형		
3) 유체	:	Water/Wate	er	
4) 냉각수 압력	:	<5	Kg/cm²	
5) 냉수 입구온도	:	11	$^{\circ}$ C	
6) 냉수 출구온도	:	6	$^{\circ}$ C	
7) 냉각수 입구온도	:	5	$^{\circ}$ C	
8) 냉각수 출구온도	:	10	$^{\circ}$ C	
9) 냉수 유량	:	456	m³/h	
10) 냉각수 유량	:	585	m³/h	
11) 냉각수 배관 Size	:	300	mm	
12) 냉수 배관 Size	:	300	mm	
13) 냉각탑 냉각팬 소비동력	:	15*2대	kW(380 Volt*3p)	
14) 냉수 펌프 사양	:	45	kW(380 Volt*3p)*2	2mH
15) 냉각수 펌프 사양	:	45	kW(380 Volt*3p)*2	5mH

5. 사업효과

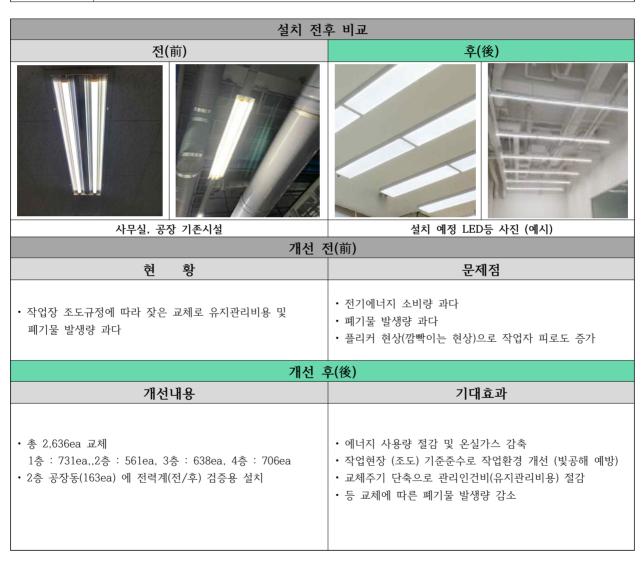
사업후 전기에너지 절감량 산정 : 동절기 FREE COOLING SYSTEM 적용기간 절감량 산정

월	시간	일	냉수유량	온도차	취득열량	usRT	kW	
ョ	시선	ㄹ	(m³/h)	(°C)	(kcal/h)	usix i	KVV	
12월		31			1,696,320,000	560,952	292,761	
1월	24	31	456	5	1,532,160,000	506,667	264,429	
2월		28			1,696,320,000	560,952	292,761	
계	24	90	456	5	4,924,800,000	1,628,571	849,951	

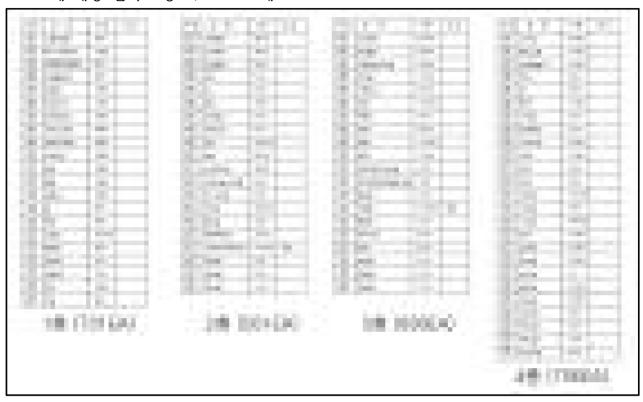
- 전기에너지 절감량 : 849,951 kwh /년 (사업후 절감량이므로 사업전 발생량으로 산정하고, 사업후에는 0으로 산정 함)
- 사업전 전력량 = 849,951 kwh /년
- 사업후 전력량 = 0 kwh /년
- 절력 절감량 = 849,951 kwh /년
- 전력량 개선율 : 100 %

- 온실가스 저감량 = 전력절감량 x 탄소배출계수(tCO₂eq/kwh) = 849,951 kwh /년 x 0.00045941 = 390.5 tCO₂eq/년
- 전력비용절감액 = 전력절감량 x 전력단가(120원/Kwh) = 849,951 kwh /년 x 120원/Kwh = 101,994,120원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 101,994,120원 / 326,700,000원 = 0.31
- 총 B/C = 연간B/C *내구연한 11년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 40101802 열교환기 = 0.31 * 11 = 3.41

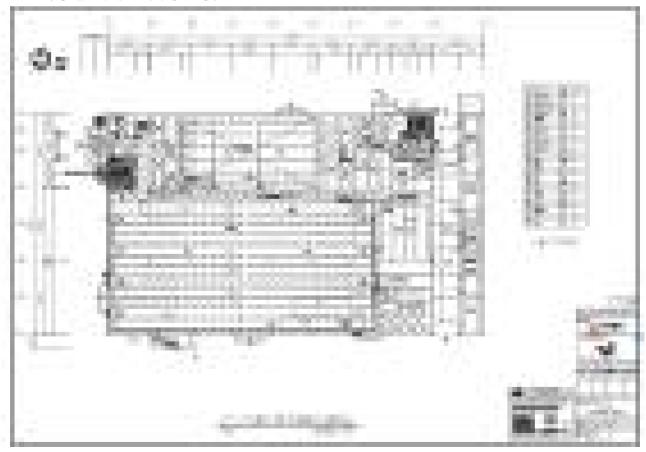
6. 참고 : 기상청 자료

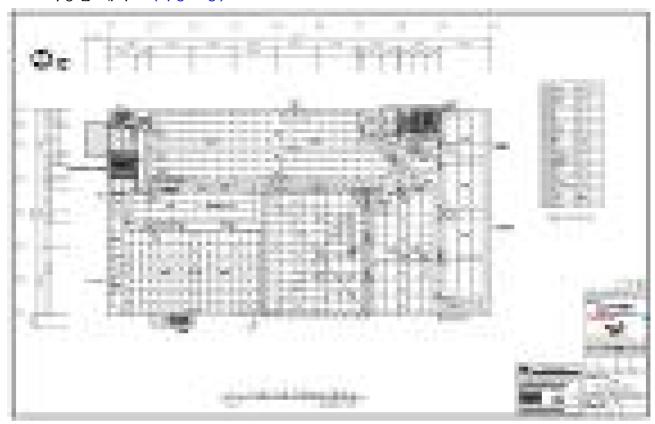

▼ 최근 3년 월평균 습구온도 (기상청 자료활용)

지점명	일시	평균기온(°C)	평균상대습도(%)	습구온도(°C)
인천	2021년 1월	-2	55	-4.41
인천	2021년 2월	2.1	57	-0.81
인천	2021년 3월	7.7	65	4.89
인천	2021년 4월	13.2	55	8.72
인천	2021년 5월	16.2	66	1
인천	2021년 6월	21.6	69	
인천	2021년 7월	27.2	65	
인천	2021년 8월	25.5	68	als:
인천	2021년 9월	22.7	63	
인천	2021년 10월	16	62	11.91
인천	2021년 11월	8.8	63	5.69
인천	2021년 12월	1.3	56	-1.53
인천	2022년 1월	-2.2	54	-4.63
인천	2022년 2월	-1.3	57	-3.68
인천	2022년 3월	6.7	65	4
인천	2022년 4월	12.9	61	9.1
인천	2022년 5월	17.1	62	
인천	2022년 6월	21.9	77	
인천	2022년 7월	26.2	79	
인천	2022년 8월	24.9	82	3
인천	2022년 9월	22	69	
인천	2022년 10월	14.4	67	
인천	2022년 11월	10.2	64	7.02
인천	2022년 12월	-2.6	56	-4.87
인천	2023년 1월	-1.6	62	-3.66
인천	2023년 2월	1.6	62	-0.89
인천	2023년 3월	8.1	57	4.56
인천	2023년 4월	12.7	61	8.92
인천	2023년 5월	18	67	
인천	2023년 6월	21.8	77	1
인천	2023년 7월	25.7	84	
인천	2023년 8월	26.6	80	1
인천	2023년 9월	23.5	75	
인천	2023년 10월	16.3	65	12.52
인천	2023년 11월	6.9	66	4.26
인천	2023년 12월	1.2	69	-0.78


* (12~3월) 4개월동안 운전이 가능한 것으로 확인하였으나, 보수적으로 3개월로 예상함

② LED등 (건축물 에너지절감/온실가스절감)


오염물질 저감량	-	절감금액	38,793,480원/년	
에너지 절감량	323,279 kWh/년	온실가스 감축량	148.5 tCO ₂ eq/년	
시 설 개 요	• LED 등으로 교체 설치 (가동-사무실, 공장, 교육장등 2,636ea)			
시설 필요성	• 전기에너지 절감 및 온실가스 배출량 감소 • 작업환경개선 (빛공해 위험 방지) • 폐기물 발생량 감소로 비용 절감			


- 교체 대상 설비 : 총 2,636ea 교체

- 각층별 배치도 (가동 1층)

- 각층별 배치도 (가동 2층)

- 각층별 배치도 (가동 3층)

- 각층별 배치도 (가동 4층)

- 사업효과 산정

- 사업전

현재사용등기구	정격용량	수량 (ea)	시간당 사용량(W)	사용시간(h)	사용량 (kwh)
36W*2 등용	64W	2,636	168,704	24	4,048.9/일 1,477,847/년

사업전/후 전력사용량 검증방법 : 2층 163ea 등기구에 전력량계 설치하여 교체전/후 검증

- 사업후

LED 면조명	정격용량	수량 (ea)	시간당 사용량(W)	사용시간(h)	사용량 (kwh)
50W	50W	2,636	131,800	24	3,163.2/일 1,154,568/년

- 전력 절감량 = 1,477,847/년 - 1,154,568/년 = 323,279 kwh /년


- 전력량 개선율 : 21.9 %

323,279 kwh /년 (전력 절감량) 산식 = (------) X 100 1,477,847 kwh /년 (사업 전 전력량)

- 온실가스 저감량 = 전력절감량 x 탄소배출계수(tCO₂eq/kwh) = 323,279 kwh /년 x 0.00045941 = 148.5 tCO₂eq/년
- 전력비용 절감액 = 전력절감량 x 전력단가(120원/Kwh) = 323,279 kwh /년 x 120원/Kwh = 38,793,480원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 38,793,480원 / 160,000,000원 = 0.24
- 총 B/C = 연간B/C *내구연한 6년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 39111501 형광등기구 = 0.24 * 6 = 1.44

③ 인버터 장착 블로워 (오염방지시설 에너지절감/온실가스절감)

오염물질 저감량	-	절감금액	9,743,160원/년	
에너지 절감량	81,193 Kwh/년	온실가스 감축량	37.3 tCO ₂ eq/년	
시 설 개 요	• 수질오염방지시설 집수조 운영설비인 블로워를 인버터 형식으로 교체			
시설 필요성	• 블로워는 수질오염방지시설중 집수조의 수질균등을 위하여 24시간, 365일 가동하는 설비에 인버터를 장착하여 전기에너지 절감 및 온실가스 배출량 감소 • 모터과열 고장 사전예방 및 유지관리비용 절감			

- 대상 설비 : 30Hp X 2 대(1대 예비용)

인버터는 전동기의 속도를 제어하여 한전에서 제공하는 고정 주파수를 더 낮은 값으로 변환시켜 주게 되면 에너지 절감 효과를 얻을 수 있음

2승 저감 토크 특성(Variable Torque)을 나타내는 팬, 펌프, 블로워와 같은 부하에서는 사용되는 동력 양이 회전 속도의 3승에 비례하게 되어 에너지 절감 효과가 큼인버터의 에너지 절약 운전은 인버터의 출력 전류가 설정한 전동기의 무부하 전류보다 작은 경우 출력 전압을 설정한 값만큼, 혹은 자동으로 계산하여 줄여주는 기능으로 출력되는 동력 양은 출력 전압과 출력 전류에 직접적인 연관이 있는 만큼, 출력전압이 감소되는 비율에 따라 에너지가 절감됨.

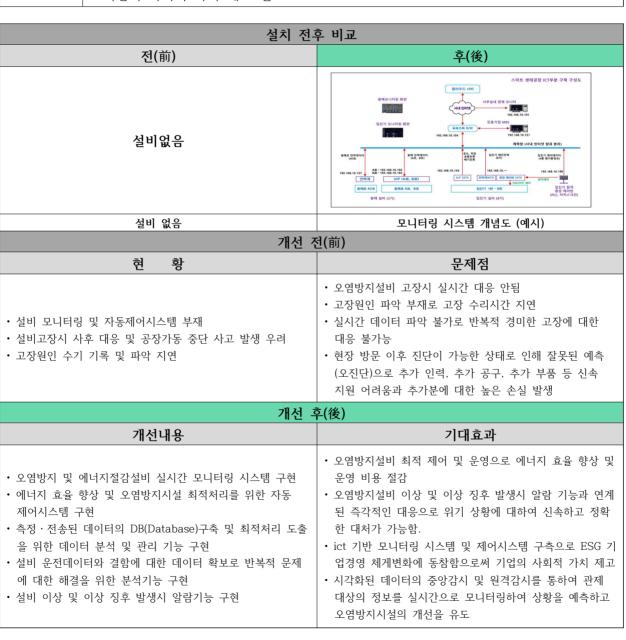
원하는 속도 값을 정밀 제어할 수 있기 때문에 설비를 최적 조건으로 운전할 수 있게 되며, 생산성 향상이 가능하고 설비의 유지보수에 소요되는 비용과 시간을 절약.

집수조에 산소공급을 위하여 24시간 작동하는 블로워에 인버터를 설치할 경우 전력 사용량이 절감되며 이를 통해 탄소중립 관련 에너지 정책에 기여할 수 있음.

- 인버터 적용 절감량

- 사업전 전력량 = 22kw * 24 * 365 = 192,720 kwh /년
- 인버터 60Hz에서 50Hz 24시간 365일가동 적용시
 - = (50/60)^3 * 192,720 kwh /년 = 111,527 kwh /년
- 전력 절감량 = 192,720 111,527 = 81,193 kwh /년

- 전력량 개선율 : 42.1 %


- 온실가스 저감량 = 전력절감량 x 탄소배출계수(tCO₂eq/kwh)
 - = 81,193 kwh /년 x 0.00045941 = 37.3 tCO₂eq/년
- 전력비용 절감액 = 전력절감량 x 전력단가(120원/Kwh)
 - = 81,193 kwh /년 x 120원/Kwh = 9,743,160원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 9,743,160원 / 55,560,000원 = 0.18
- 총 B/C = 연간B/C *내구연한 10년

[시행 2022.1.1.] 조달청 고시 내구연한 물품번호 39121006 인버터

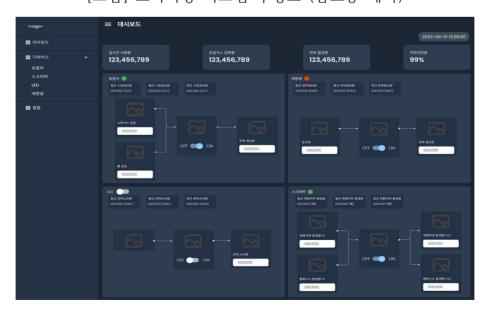
= 0.18 * 10 = 1.8

④ 모니터링 시스템 (사업성과 모니터링·제어/ICT)

오염물질 저감량	-	절감금액	49,663,500원/년
에너지 절감량	-	온실가스 감축량	-
시 설 개 요	• 오염방지시설 및 에너지절감설비 모니터링 및 자동제어 시스템 구축		
시설 필요성	 설비의 시각화된 데이터의 중앙 등 오염방지설비 최적 제어 및 운영의 이상 및 징후 발생시 알람기능과하고 정확한 대처 필요 ICT 기반 모니터링 및 제어시스템기업의 사회적 가치 제고 필요 	으로 에너지 효율 연계된 즉각적인	대응으로 위기상황에 대하여 신속

- 시스템 구성 계획

설비가동 데이터 축적을 통한 최적의 가동조건 산출이 가능하고, 확장 가능성이 높아 추후 에너지 절감, 화재, 보안 등 분야와 연계가 가능함.


특히, 스마트생태공장 사업시설 전반에 관한 작업자의 경험과 노하우를 수집, 분석하여 시스템에 반영함에 따라 센서를 통해 수집, 저장, 분석이 가능함.

사업시설의 가동상태 및 현황 실시간 모니터링하여 방지시설 데이터를 분석 가능 중앙 및 원격 제어가 가능토록 구성하여 효율적인 운영방안 마련 시설별 정상운영 및 비정상운영시 알람 설정

시스템 구성도

[그림] 모니터링 시스템 구성도 (참고용 예시)

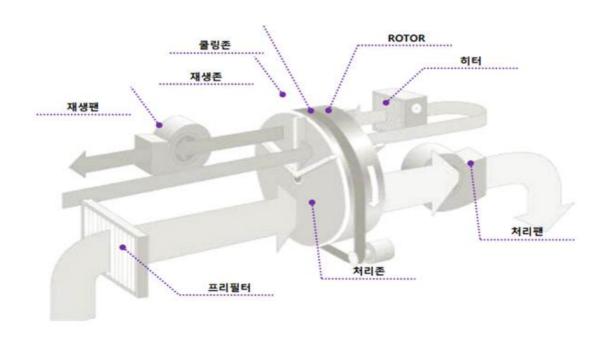
[그림] 대쉬보드 화면 (참고용 예시)

[그림] 사물인터넷 IoT 측정기기 종류

[그림] ICT 구성 사진(스마트 생태공장 구축 사례)


- 경제적 성과 산정
 - . 모니터링 체계 미구축시 투입 필요 예상 인력 : 1인
 - . 노임단가 : 165,545원 (보통인부 노임적용, 2024.1월 기준)
 - . 산출식 : 경제성효과, 투입 대체 노동시간 절감비용
 - = 투입인원 x 투입기간 x 노임단가 = 1인 x 12월/년 x 165,545원/일 x 25일/월
 - = 49,663,500원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용
 - 49,663,500원 / 90,600,000원 = 0.548
- 총 B/C = 연간B/C *내구연한 13년
 - [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 41113689 종합계측기
 - = 0.548 * 13 = 7.12

⑤ 총탄화수소 전처리설비 (대기오염방지/대기오염저감)

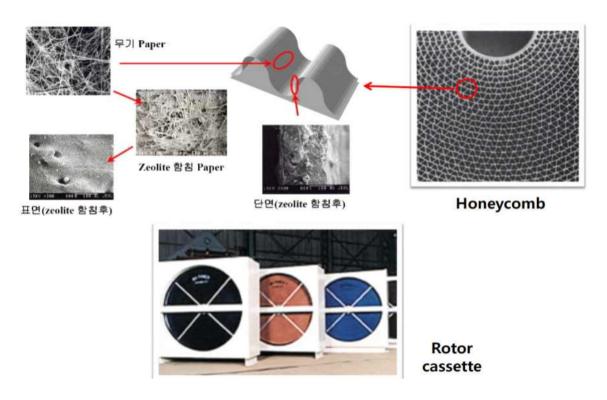

오염물질 저감량	총탄화수소(THC) 60.6ppm→9.09ppm	절감금액	37,946,626원/년	
에너지 절감량	-	온실가스 감축량	-	
시 설 개 요	• 인쇄후 건조시설에서 발생하는 총탄화수소(THC) 저감설비 설치로 후단방지시설인 활성탄 흡착시설의 안정적인 운영 도모			
시설 필요성	• 전처리시설 설치로 대기오염물질 배출감소 및 작업자의 건강증진 • 인쇄후 고온건조시 발생하는 총탄화수소의 전처리설비 필요 • 건조시설 운전조건(온도 유지)에 따라 배기량을 많이 할 수 없어 건조시설 전/후단부 에 별도의 전처리설비 필요함 (총 6개소에 설치)			

설치 전후 비교							
전(前)	후(後)						
-	SHIP SUNG SHIP SUNG THE SHIP SUNG THE SHIP SHIP SHIP SHIP SHIP SHIP SHIP SHIP						
현재 설비 없음	설치 예정 사진 및 도면						
개선 기	전(前)						
현 형	문제점						
• 인쇄후 건조공정이 연속적인 공정에서 건조시설의 운전조건 (온도유지)으로 가스량 배출을 많이 할 수 없음 • 배기되지 않은 잔존가스로 인하여 작업환경 악화	• 건조시설 운전조건(건조온도)으로 배기량을 조절필요 (온도저하로 과하게 배기할 수 없음) • 미 배출된 총탄화수소(유기성물질)이 작업장에 존치함						
개선 -	후(後)						
개선내용	기대효과						
• 인쇄후 건조시설전단 및 후단부에 별도의 총유기탄소 저감설 비를 장착하여 건조기 운전조건 문제발생 억제 • 현장설치 여건을 감안하여 설비위치 선정 : 6개소 설치하여 건조시설 총탄화수소 1차 전처리후 2차 활성탄흡착시설(기존, 600CMM) 에 연결처리	• 작업장 대기오염물질(총 유기탄소)량 감소 • 미배출된 대기오염물질 안정적인 처리 • 작업환경 개선 으로 작업자의 건강 증진 • 전처리시설(6기) 구축으로 대기오염물질 저감						

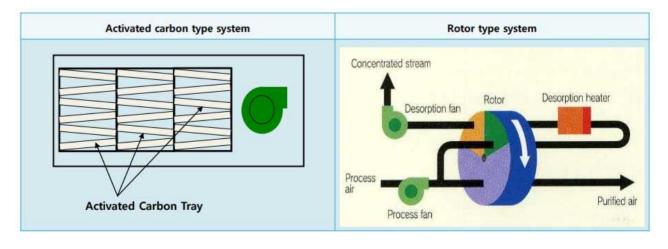
- 전처리설비 설치위치 (총 6개소)

- 전처리설비 구성도

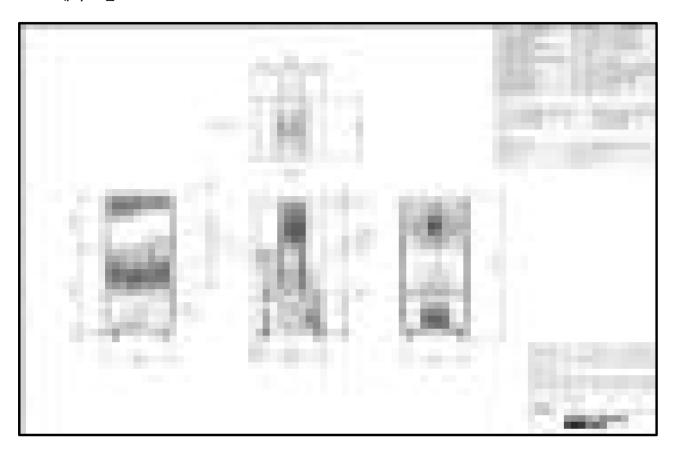
처리존 : 총탄화수소(THC)를 흡착하는 구역

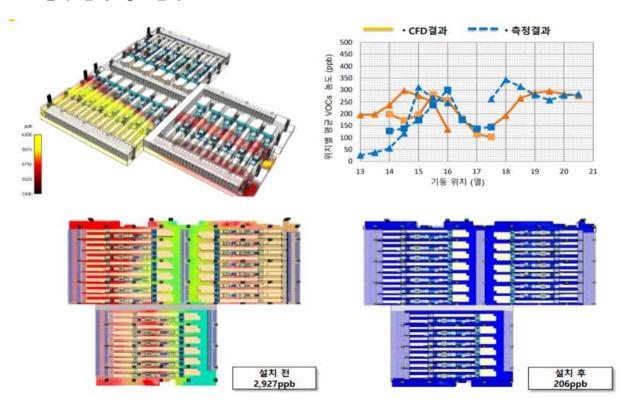

재생존 : 로터에 흡착된 총탄화수소(THC)를 고온의 열로 탈착하는 구역

쿨링존 : 고온탈착으로 인해 뜨거워진 재생존을 클린룸의 공기로 냉각하는 구역


쿨링존을 통과한 로터는 냉각, 공기는 가열됨 (히터의 소비전력 감소)

히 터 : 쿨링존을 통과하여 예열된 공기를 재생온도까지 가열해주는 구역


- ROTOR의 구조


- 타 제품 시스템 비교

- 제작도면

- 설치 전,후 농도변화

- 전처리설비 사전 테스트 결과

GC-MS (VOCs)

	At	CAS NO.	M.W.	Farmula	B.P.	In	out
No	Name	CAS NO.	M.W.	Formula	(°C)	1	2
1	Ethanol	64-17-5	46	C2H6O	78	23.5	
2	Acetone	67-64-1	58	C3H6O	56	7.3	2
3	Acetic acid	64-19-7	60	C2H4O2	118	5.8	
4	2 Butanone	78 93 3	72	C4H8O	80	16.6	15.0
5	Ethyl Acetate	141-78-6	88	C4H8O2	77	318.7	57.0
6	Chloroform	6/-66-3	118	CHCI3	61	3.2	•
7	Tetrahydrofuran	109-99-9	72	C4H8O	66	2.4	
8	Hexane, 2-methyl-	591-76-4	100	C7H16	90	19.5	
9	Hexane, 3-methyl-	589-34-4	100	C7H16	91	29.0	
10	Cyclopentane, 1,3-dimethyl-, cis-	2532-58-3	98	C7H14	94	11.1	
11	Cyclohexane, methyl-	108-87-2	98	C7H14	101	32.6	3
12	Methyl Isobutyl Ketone	108-10-1	100	C6H12O	117	7.3	
13	Toluene	108-88-3	92	C7H8	111	159.8	50.5
14	Acetic acid, butyl ester	123-86-4	116	C6H12O2	125	8.6	5.7
15	PGMEA	108-65-6	132	C6H12O3	146	39.6	
16	Ethylbenzene	100-41-4	106	C8H10	136	41.7	2.4
17	p-Xylene	106-42-3	106	C8H10	138	131.0	14.0
18	Ethanol, 2-butoxy-	111-76-2	118	C6H14O2	171	19.5	
19	trans-B-Ocimene	3779-61-1	136	C10H16	170	9.0	
20	Benzaldehyde	100-52-7	106	C7H6O	179	23.3	- 3
21	Phenol	108-95-2	94	C6H6O	181	7.5	(#
22	1-Hexanol, 2-ethyl-	104-76-7	130	C8H18O	184	68.5	- 4
23	NMP	872-50-4	99	C5H9NO	203	43.1	- 34
24	Ethanol, 2-(2-ethoxyethoxy)-, acetate	112-15-2	176	C8H16O4	219	19.1	
25	Azulene	275-51-4	128	C10H8	214	3.7	- 2
26	Ethanol, 2-(2-butoxyethoxy)-, acetate	124-17-4	204	C10H20O4	242	14.1	
27	Diethyl Phthalate	84-66-2	222	C12H14O4	296	14.7	
28	벤젠계열	-	-		-	175.8	12.8
29	unknow	Ş., Ş.	5		Ç	58.6	6.3
	7.000.000	.5.	1314.5	163.6			
	M.		87	.5			

- 총탄화수소(THC) 배출저감량 산정

'대)		인입				출구			저감효율(%)		
			12				1.2			-	
(ppm)			60.	6			9.09			87.5	
			6			6			-		
/년)			9.0)			0.13	}		8.87	
apericlas					_	T		혼합			
1,500,000	90 9	2409	用型	1895			-	가스량			
### #################################			(年)	(m/m mo/Sel)	可養子 世点	→	실제 (m'/분)	표준 (Sm'/분)	비배출시설 (Sm'/분)		
21 4689 7,41	황산화물	216	50	1.0ž		Ī	(배출시설만) 532.29	449.89	7.41		
 	선진	345	80	0.73							
- I		15.87	50	793							
				-		4	7.95		le s		
1 3	14.71000	3.00	80	17777	est :		0101	2121	- 1	w1 70	
1		0.00	50	000		- 1	오염물질증류		23		明音告도 (ppm,mg/Sm)
44	東ス教物量	547	50:	3.23		اح				(%)	
	마찬수소	5310	<u>80</u>	10.70			타하스스	53.50		80	10.70
			J			L		33.30			10.79
9	변수 (변수) (1년	변기 (변기 (변기 (변기 (변기 (변기 (변기 (변기 (변기 (변기 (# 1	#지시설 변환 전략 전략 전략 전략 전략 조약 전략 조약 전략 조약 전략 조약 전략	변지시설 변환 영향 영향도 제한 핵출소도 기준 핵출소도 2월 100m.mg/se) 표준 100m.mg/se) 표준 100m.mg/se) 표준 100m.mg/se) 표준 100m.mg/se) 100m.m	#지시설 변환 경험 경험 제공 변환도	#지시설 변환 연합 연합 변환도 처럼 변환하도 요합 변환 요합 보험 연합	(배출시설만)	-/년) 9.0 0.13 \$\frac{\partial}{\partial}}{\partial} \$\frac{\partial}{\partial}}{\partial} \$\frac{\partial}{\partial}}{\partial} \$\frac{\partial}{\partial}}{\partial} \$\frac{\partial}{\partial}}{\partial} \$\frac{\partial}{\partial}}{\partial} \$\frac{\partial}{\partial}}{\partial}} \$\frac{\partial}{\partial}} \$\frac{\partial}{\partial}}{\partial}} \$\frac{\partial}{\partial}} \$\frac{\partial}{\partia	-/년) 9.0 0.13 \$74 # # # # # # # # # # # # # # # # # #	# (## 변경 180 명 180 g 18

- * 사전테스트결과 주 원인물질은 Ethyl Acetate (C₄H₈O₂, M.W 88)로 예상됨.
- * (세미큐어) 건조시설 연결방지시설인 A/C TOWER의 총탄화수소(THC) 농도와 자가측정결과 방지시설 효율 (80%) 역산한 농도 중 높은값을 적용함.
- * 사업시행시 전단/후단을 공인기관에 측정하여 검증예정임.

. 전처리시설 인입 농도 ① 53.5ppm -통합환경자료

②12.12ppm / (1-0.8) = 60.6ppm -자가측정자료중 최대치 적용1)

배출량 = 60.6ppm x 12㎡/분/대 x 6대 x 88m.w/22.4㎡ x 60 x 24 x 365 x 10⁻⁹ = 9.0톤/년

. 전처리시설 출구 농도 : 9.09ppm

배출량 = 9.09ppm x 1.2m³/분/대 x 6대 x 88m.w/22.4m³ x 60 x 24 x 365 x 10-9 = 0.13톤/년

- . 저감농도 = 인입 출구 = 60.6 9.09 = 51.51ppm
- . 저감량 = 인입 출구 = 9.0 0.13 = 8.87 톤/년
- 배출량 개선율 : 85 %

- ② 절감비용 산정
 - 1. THC 농도 저감 연간절감비용 = 연간THC 배출저감량 * THC 단위당 피해비용 추정원/ kg²⁾ = 8,870kg/년 * 2,825원/kg = 25,057,750원
 - 2. THC 농도 저감에 따른 호흡기질환 발생 절감 전체고용인원중 1% 적용함 455명(현재고용인원) * 0.01 = 4.55명 연간절감비용 = 인원 * 236,060천원/인/월 (1인당 산재보상비용/인³⁾ = 4.55인 * 236.060천원/인/월 x 12월/년 = 12,888,876원/년

총 절감비용 = 25,057,750원 + 12,888,876원/년 = 37,946,626원/년

- 연간 B/C = 연간 절감 비용 / 시설 설치비용 37,946,626원 / 297,000,000원 = 0.128
- 총 B/C = 연간B/C *내구연한 10년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 40161503 집진기 = 0.128 * 10 = 1.28

^{1) 2023.5.22.} 자가측정기록부 참조 (3. 산출근거 中 3.3 대기오염저감 증빙자료-④ 첨부)

²⁾ NMVOC 항목적용 / 대기오염물질 사회적 비용 재평가 연구 (KEI, 2015)

³⁾ 산업안전예방 / 대기오염물질 사회적 비용 재평가 연구 (KEI, 2015)

⑥ 폐수처리시설 약품절감설비 구축 (수질오염방지/수질오염저감)

오염물질 저감량	수질오염물질배출량 3.68톤/년	절감금액	20,085,650원/년				
에너지 절감량	-	온실가스 감축량	-				
시 설 개 요	• 수질오염방지시설의 약품공급시설인 가성소다 희석탱크 교반기 구축 • 폴리머자동용해공급시설 구축						
시설 필요성	• 안정적인 수처리시설 약품공급시설 구축으로 약품투입량 감소 및 수질오염물질 저감 • 폐수처리시설의 공급약품인 가성소다의 희석탱크 교반기 설치로 농도 균질화로 약품반응 최대화 및 미용해 약품 방지로 약품사용량 감소 와 수질개선효과 기대 • 폴리머 자동용해 및 공급장치 설치로 과투입 약품비용절감 및 탈수기 여과포막힘방지						

설치 전후 비교 전(前) 후(後) 가성소다교반기 폴리머 자동용해 가성소다 교반기 미설치시설 폴리머 수동용해 및 공급시설 설치사진(예시) 공급사진 (예시) 개선 전(前) 현 문제점 • pH조정제인 가성소다를 50%에서 25%로 희석시 에어브로워 • 농도 불균질로 약품을 투입량 조절불가 로 용해하여 용해속도 저하 및 농도 불균질화로 투입량 및 • 고부하 수질 유입시 처리효율 낮음 농도가 불규칙적임. • 균질한 가성소다 및 폴리머 공급 불가 • 폐수처리공정에 투입되는 농도 불규칙하여 반응효과 저하 • 과다한 폴리머 투입으로 탈수기여과포 막힘현상 초래 • 폴리머농도 불균질로 과다하게 투입 개선 후(後) 개선내용 기대효과 • 가성소다 희석교반기 설치로 균등농도 약품 공급 • 약품반응성 향상으로 수질오염물질 배출량 저감 • 최적량 투입으로 PH 조정하여 오염물질농도 저감 • 적정량 투입으로 폴리머 및 가성소다 약품사용량 절감 • 분말 폴리머 미용해에 따른 과투입 방지 • 탈수기 여과포 눈막힘 현상 감소로 탈수기여과포 교체주기 • 폴리머 균등투입으로 약품사용량 절감 및 오염물질농도 감소 감소로 유지관리비 절감

- 가성소다 희석용 교반기 구축으로 약품사용량 절감 및 수질오염물질 배출량 저감

브로워 방식으로 교반시 에어가 고루게 분포하지 못하여 50%를 25%로 희석시 균질화가 원활하게 되지 않아, 폐수처리시설로 공급되는 가성소다의 농도가 불규칙하 여 투입량이 과다해지고 폐수처리 효율도 저하됨

가성소다는 1차 반응조의 ph를 9이상으로 높여주어 인쇄회로기판제조시 발생하는 폐수의 반응응집처리시 중요한 약품임. 적정ph의 조정으로 폐수중 함유된 구리화합물 (Cu)의 제거에 기여한다.

180rpm 교반기를 설치하여 희석완료된 약품을 균질한 농도로 공급하여 수질오염물질 농도감소 효과를 예상한다. 농도절감율 10% 예상 수질오염물질중 약품반응에 의해 수질이 개선되는 항목인 TOC, SS, Cu를 기준한다.

- 폴리머 용해 및 자동공급시설 설치로 약품사용량 절감

분말형태의 폴리머를 수동주입하여 용해하는 방식으로 운영중 농도 및 투입량 불균등으로 과다투입됨. 배관 및 정량공급펌프 막힘현상 발생 자동용해 자동공급시설 설치로 폴리머 사용량 절감 효과기대 과사용할 경우 탈수기여과포 눈막힘현상이 발생하여 cake 탈착작업 난해함.

- 수질오염물질 배출량 저감 및 약품 사용량 절감예상

구	분	2023년 (사업전)	사업후	저감효율(%)	
1 T	TOC	61.3	55.17	10	
수질 오염물질	SS	15.0	13.5	10	
工品包包	Cu	1.728	1.56	10	
액상	사용량	470,750 kg	423,675kg	10	
가성소다	단가	420 원/kg	420 원/kg	-	
분말	사용량	583 kg	522 kg	10	
폴리머	폴리머 단가 5,150 원/kg		5,150 원/kg	-	
약품입고증빙		845,140 kg	798,065kg	5.5	
(유독물 실적보고)		(가성소다 50% 액상)	(가성소다 50% 액상)	J.J	

* 전체입고량은 공정사용분을 포함함. 사업전/후 수질오염물질 공인기관 측정성적서로 검증함.

- 수질오염물질 저감

TOC: 61.3 mg/ℓ x 저감율 10% = 55.17 mg/ℓ

사업전 = 61.3mg/ℓ* 1300톤/일*365일*10⁻⁶ = 29톤/년

사업후 = 55.17mg/ℓ* 1300톤/일*365일*10⁻⁶ = 26.1톤/년

저감량 = (61.3-55.17)mg/ℓ * 1300톤/일*365일*10⁻⁶ = 2.9톤/년

SS: 15 mg/ℓ x 저감율 10% = 13.5 mg/ℓ

사업전 = 15mg/ℓ * 1300톤/일*365일*10⁻⁶ = 7톤/년

사업후 = 13.5mg/ℓ * 1300톤/일*365일*10⁻⁶ = 6.3톤/년

저감량 = (15-13.5)mg/ℓ * 1300톤/일*365일*10⁻⁶ = 0.7톤/년

Cu : 1.728 mg/ℓ x 저감율 10% = 1.56 mg/ℓ

사업전 = 1.728mg/ ℓ * 1300톤/일*365일*10⁻⁶ = 0.82톤/년

사업후 = 1.56mg/ℓ * 1300톤/일*365일*10⁻⁶ = 0.74톤/년

저감량 = (1.728-1.56)mg/ℓ * 1300톤/일*365일*10⁻⁶ = 0.08톤/년

사업전 발생량(합계) = 29 + 7 + 0.82 = 36.82톤/년

사업후 발생량(합계) = 26.1 + 6.3 + 0.74 = 33.14톤/년

사업후 저감량 = 2.9 + 0.7 + 0.08 = 3.68톤/년

- 배출량 개선율 : 10 %

- 약품사용량 저감
 - . 액상가성소다 저감량 = 사업전 사업후 = 470,750 423,675 = 47,075kg/년
 - . 분말폴리머 저감량 = 사업전 사업후 = 583 522 = 61 kg/년
- 경제적 성과 산정
 - . 액상가성소다 저감량 x 단가 = 47,075kg/년 x 420원 = 19,771,500원
 - . 분말폴리머 저감량 x 단가 = 61kg/년 x 5150원 = 314,150원
 - . 합계 =19,771,500 + 314,150 = 20,085,650원
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 20,085,650원 / 75,000,000원 = 0.267
- 총 B/C = 연간B/C *내구연한 10년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 47101512 혼합기 및 교반기 = 0.267 * 10 = 2.67

⑦ 멤브레인 탈수기 (폐기물 저감/폐기물배출 저감)

오염물질 저감량	폐수처리오니 130.39톤/년	절감금액	12,442,109원/년				
에너지 절감량	_ 온실가스 _ 감축량						
시 설 개 요	• 2차 압착탈수방식인 멤브레인 탈수시설 설치						
시설 필요성	• 함수율 저감으로 폐기물 배출총량 감소 및 재이용 비중 증가 - 도시광산 산업 촉진 • 화학적폐수처리중 발생하는 슬러지는 함수율이 높아 고-액분리를 반드시하여 함 • 보관·이동·처리시 비용절감 절실						

설치 전후 비교 전(前) 후(後) 현재운영중인 탈수시설 멤브레인 탈수시설(예시사진) 개선 전(前) 현 황 문제점 • 탈수시간 부족으로 함수율 높음 • 함수율 75~ 80%정도로 폐기물 발생량 많음 • 여과포 교체주기 잦음 (유지관리비용 과다) • 탈수기용량 부족으로 탈수시간 부족 • 탈수케잌 분리작업시 자동판 이동장치 없어 수동작업함 개선 후(後) 개선내용 기대효과 • 멤브레인 여과판장착 탈수기로 교체 • 폐기물 함수율 저감으로 폐기물 배출총량 감소 • 자동/수동 여과판 이동장치 설치 • 폐기물내 (Cu)농도 높아져 재이용비용 증가 - 도시광산 산업 촉진 • 기존 탈수기는 예비용시설로 전환 2계열로 운영 • 고장 및 탈수시간 부족시 예비용시설 사용가능 하도록 구성 • 예비용시설 구축으로 가동중지 사고 예방

- 개요

- o 화학적처리시설에서 약품에 의해 응집처리된 고형물의 고액분리를 위하여 설치하는 탈수시설(FILTER PRESS)은 침전조하부의 함수율 99% 슬러지를 농축조로 이송하여 2차 중력침강하며, 탈수시설로 고압운전하여 CAKE화 배출한다.
- O 필터 프레스는 대규모 탈수 처리가 가능하고 Cake의 함수율이 낮기 때문에 다양한 폐수처리 시설에 폭넓게 사용된다. 필터 프레스 탈수공정은 체임버 내의 슬러지를 액체와 고체로 분리하는 과정으로 이루어진다. 유압 실린더로 여 과판을 압착하고 피드 펌프를 사용하여 슬러지를 압착된 여과판의 체임버 내로 투입한다. 펌프는 설정된 압력까지 반복 작동하며 펌프 압력으로 체임버내의 슬러지는 여과포를 통하여 탈수되며 설정된 타이머에 의해 시간이 종료되면 여과판 이송기를 사용하여 여과판을 분리하여 체임버 내에 형성된 Cake를 제거하는 원리이다

〈설비사양〉

- 여과용량: 20,520Liter/cycle - 여과면적: 58.52m²

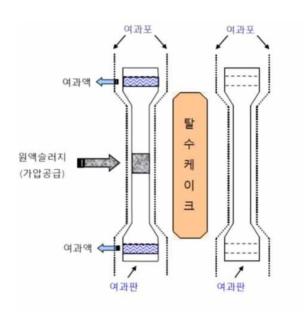
- 여과용적: 1,026Liter

- 여과판: Mixed Pack

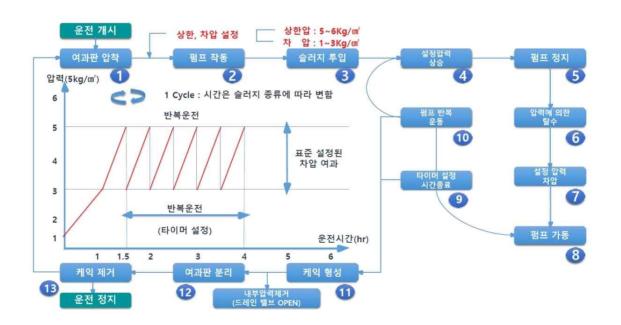
형식: Recessed(1000x1000x59t) & Membrane(1000x1000x78t)

재질: PP

- 여과포: H-type

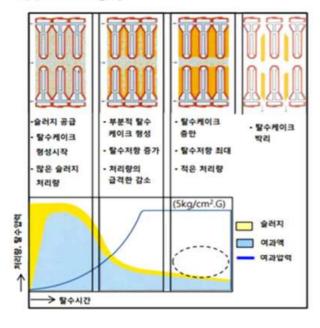

재질: PP

규격: 1050Wx1200L


O 필터프레스는 모든 산업현장에서 맑은 여과액을 배출함과 동시에 최저 함수율의 Cake생산을 위한 최적의 성능실현을 위해 강성의 본체 구조, 정밀한 설계, 운전 편의성, 열악한 운전환경에 대비한 운전 옵션 구성이 용이하며 다양한 사이즈의 제품 라인이 가능하다. PLC 프로그래밍에 의해 다기능 여과 보조 공정 및 모니터링 시스템에 이르기까지 고성능, 전자동 및 반자동 운전 선택이 가능토록 구성되어 있다.

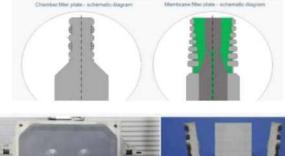
o 필터프레스 구성

- · Air Squeezing/Air Blowdown
- · 안전 커버를 구비한 여과판 이송기 및 Cake 탈리장치
- · 전자동 Sliding Drip Pan



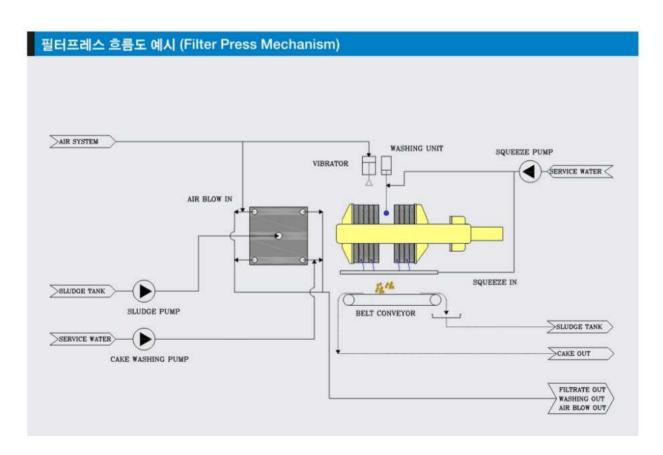
[그림]

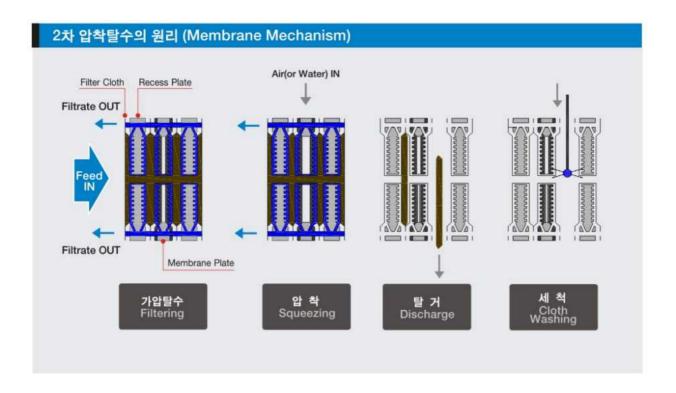
o 방식 비교

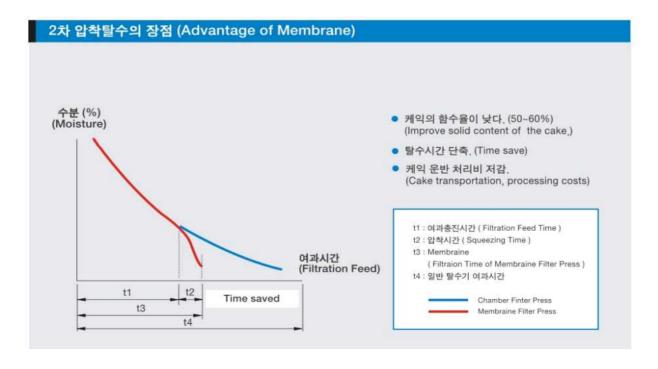

(1) Recess 방식

(2) Membrane 방식

o Membrane Filter Plate (제작사진)






- 멤브레인(Membrane) 여과판을 적용하여 Cake 함수율을 저감하여 슬러지에 잔존하는 유용자원의 함량을 높여 자원재순환시 처리비용이 절감됨. 멤브레인 필터 프레스는 Feed Pump에 의해 1차 여과된 Cake를 가압수나 공압으로 멤브레인을 팽창시켜 2차로 잔류수분을 강제 배출시켜 탈수효과를 높임.

- 멤브레인 필터 프레스의 특장점은:
- · Cake 함수율이 낮아(10~15%↓) Cake 운반비 및 처리비용 절감(30~40%)
- ·탈수시간 단축(기존탈수기 대비 50%이상 단축)으로 인한 처리량의 증가로 생산성 증대
- · Cake 제거가 용이하여 인건비 절감
- ·유용자원의 회수 (함수율 낮아 함유량 높아지며, 회수시 비용 절감)

Membrane Filter Press 탈수 공정

Preparation

Filtration

Squeeze

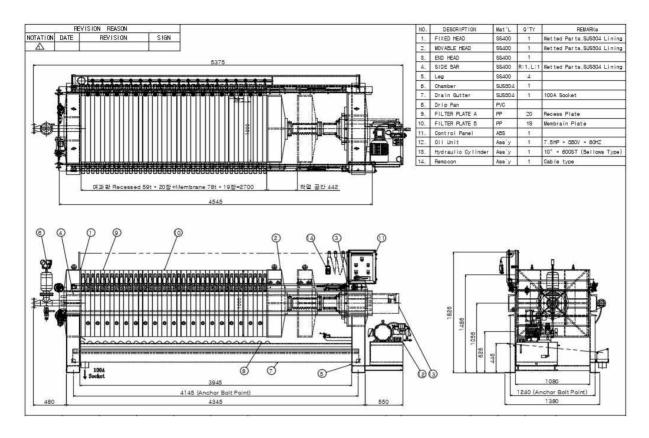
탈수 준비

슬러지 공급 및 탈수

Membrane 압착 탈수

Cake Air Blow

Cake Dischange


Finish of Cycle

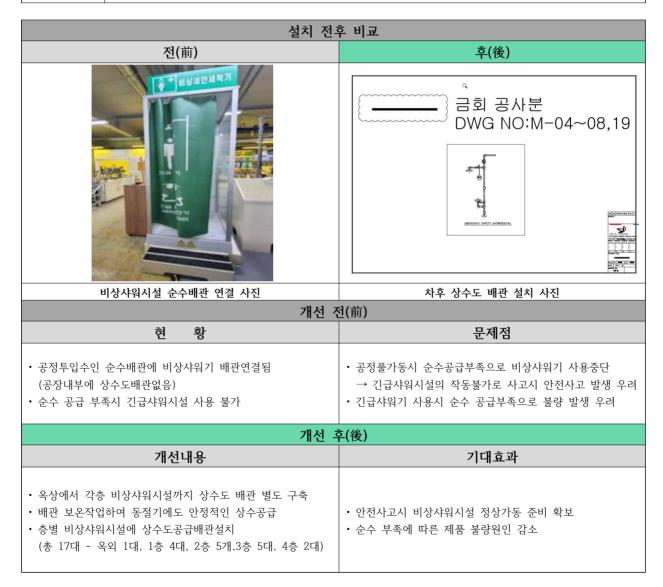
케이크 표면 잔여 수분 제거 여과판 이송 및 케이크 박리

탈수 종료

〈설치예시 사진〉

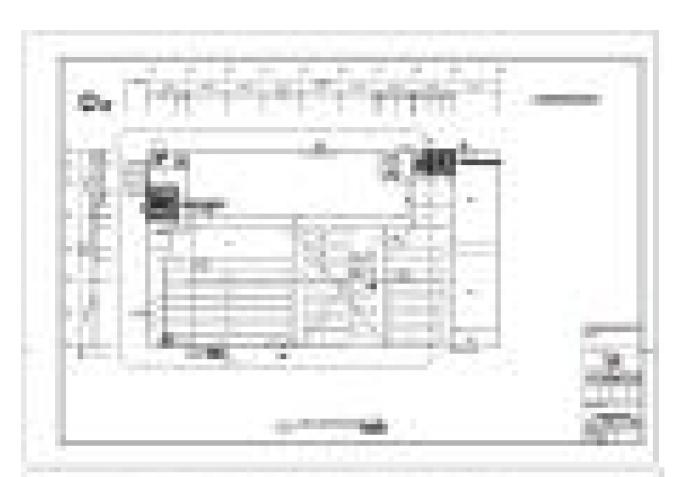
〈멤브레인 탈수기 제작도면〉

- 폐수처리오니 배출저감량 및 경제적 성과 산정

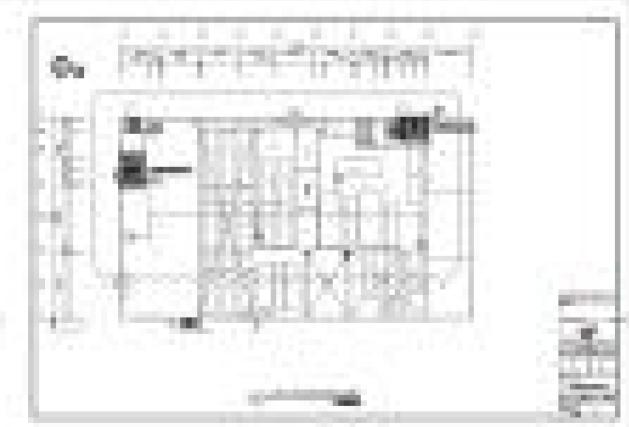

구분	2023년	사업후(예상)	저감효율(%)
올바로시스템	766,990 kg	636,601	17%
함수율	77%	60%	17%

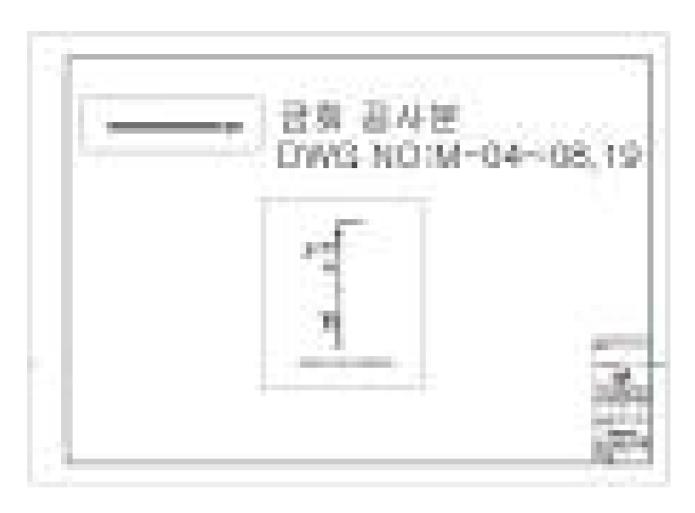
- * 상기 함수율은 경험치며, 사업시행 전/후 함수율 측정하여 검증예정임.
- 연간절감비용 = 연간 폐기물배출 저감량 * 폐기물매립에따른 사회적비용 추정 원/톤⁴⁾ = (766,990-636,601) / 1000톤/년 * 95,423원/톤 = 12,442,109원
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 12,442,109원 / 135,000,000원 = 0.092
- 총 B/C = 연간B/C *내구연한 11년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 47101525 탈수 및 배수장치 = 0.092 * 11 = 1.012

⁴⁾ NMVOC 항목적용 / 사회적 비용편익분석 사례 조사 (KIPA, 2018)


⑧ 긴급샤워시설 상수 공급배관 설치 (기타시설)

오염물질 저감량	안전사고절감	절감금액	1,074,073원/년		
에너지 절감량	-	온실가스 감축량	_		
시 설 개 요	• 공장내 설치된 긴급샤워시설 상수 공급배관 설치로 안정적인 안전장비 운영				
시설 필요성	 안정적인 상수도 공급배관설치로 위험사고시 비상샤워설비 상시 가동 준비 필요 공장 내부 긴급샤워시설이 순수 배관에 연결되어 순수공급량 부족시 긴급샤워시설을 사용할 수 없는 경우 발생 우려 상수도 배관을 설치하여 상시 사용할 수 있는 조건 성립 				


- 상수도 배관 설치



안전사고 절감에 따른 경제성효과

- 전체고용인원중 1% 적용함 455명(현재고용인원) * 0.01 = 4.55명
- 연간절감비용 = 인원 * 236,060천원/인/년 (1인당 산재보상비용/인⁵⁾ = 4.55인 * 236,060천원/인/년 = 1,074,073원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 1,074,073원 / 49,970,000원 = 0.02
- 총 B/C = 연간B/C *내구연한 8년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 49221503 헤드기어를제외한 안전용품] = 0.02 * 7 = 0.14

⁵⁾ 산업안전예방 / 대기오염물질 사회적 비용 재평가 연구 (KEI, 2015)

3.1.3 신청과제(시설) 필요성

분야	시설명	연관성
	① 열교환기 설치	• 동절기(3개월) 냉동기 사용중지(열교환기만 가동) 로 전기 사용절감 및 온실가스 배출량 감소
온실가스저감	② LED 등 교체	• 전기에너지 절감 및 온실가스 배출량 감소 • 작업환경개선 (빛공해 위험 방지) • 폐기물 발생량 감소로 비용 절감
	③인버터장착 블로워	• 블로워는 수질오염 방지시설중 집수조의 수질균등을 위하여 24시간, 365일 가동하는 설비에 인버터를 장착하여 전기에너지 절감 및 온실가스 배출량 감소 • 모터과다 고장 사전예방 및 유지관리비용 절감
ICT	④모니터링 시스템	 설비의 시각화된 데이터의 중앙 및 원격 감시 오염방지설비 최적 제어 및 운영으로 에너지 효율 향상 및 운영 비용 절감 이상 및 징후 발생시 알람기능과 연계된 즉각적인 대응으로 위기상황에 대하여 신속하고 정확한 대처 필요 ICT 기반 모니터링 및 제어시스템 구축으로 ESG 기업 경영 체계 변화에 통참함으로 기업의 사회적 가치 제고 필요
대기오염저감	⑤총탄화수소 전처리설비	 전처리시설 설치로 대기오염물질 배출감소 및 작업자의 건강 증진 인쇄후 고온건조시 발생하는 총탄화수소의 전처리설비 필요 건조시설 운전조건(온도 유지)에 따라 배기량을 많이 할 수 없어 건조시설 전/후단부에 별도의 전처리설비 필요함 (총 6개소에 설치)
수질오염저감	⑥폐수처리시설 약품절감설비	 안정적인 수처리시설 약품공급시설 구축으로 약품투입량 감소 및 수질오염물질 저감 폐수처리시설의 공급약품인 가성소다의 희석탱크교반기 설치로 농도 균질화로약품반응 최대화 및 미용해약품 방지로 약품사용량 감소 와 수질개선효과 기대 폴리머 자동용해 및 공급장치 설치로 과투입약품비용절감 및 탈수기 여과포막힘방지
폐기물 배출저감	⑦멤브레인 탈수기	• 함수율 저감으로 폐기물 배출총량 감소 및 재이용 비중 증가 - 도시광산 산업 촉진 • 화학적 폐수처리중 발생하는 슬러지는 함수율이 높아 고-액분리를 반드시 하여야 함.

		• 보관.이동.처리시 비용 절감 절실
기타시설	⑧긴급샤워시설 상수공급배관	 안정적인 상수도 공급배관설치로 위험사고시 비상샤워설비 상시 가동준비 필요 공장 내부 긴급샤워시설이 순수배관에 연결되어 순수공급량 부족시 긴급샤워시설을 사용할 수 없는 경우 발생 우려 상수도 배관을 설치하여 상시 사용할 수 있는 조건 성립

3.1.3 과제(시설)의 우수성

분야	시설명	우수성
	① 열교환기 설치	 · 펌프, 열교환기 설치로 동절기(3개월간) FREE COOLING SYSTEM 운영으로 전기에너지 절감 · 동절기 냉동기 가동중지시 부품교체 및 성능개선 을 위한 작업시행 가능으로 고장방지 · ICT와 연계하여 가동조건 및 전력사용량관리
온실가스저감	② LED 등 교체	
	③인버터장착 블로워	 인버터 설치 및 고효율 블로워 설치 윤활유사용하지 않는 에어포일베어링 적용으로 주기적인 윤활유공급이나 베어링 교환작업 불필요 ICT와 연계하여 압력, 온도, 풍량, 회전수등 원격 감시제어 및 운전방법 선택가능
ICT	④모니터링 시스템	 오염방지설비 최적 제어 및 운영으로 에너지 효율 향상 및 운영 비용 절감 오염방지설비 이상 및 이상 징후 발생시 알람 기능과 연계된 즉각적인 대응으로 위기 상황에 대하여 신속하고 정확한 대처가 가능함. ICT 반 모니터링 시스템 및 제어시스템 구측으로 ESG 기업경영 체게변화에 동참함으로써 기업의 사회적 가치 제고 시각화된 데이터의 중앙감시 및 원격감시를 통하여 관제대상의 정보를 실시간으로 모니터링하여 상황을 예측하고 오염방지시설의 개선을 유도
대기오염저감	⑤총탄화수소 전처리설비	• 작업장 대기오염물질(총 유기탄소)량 감소 • 미배출된 대기오염물질 안정적인 처리

		• 작업환경 개선 으로 작업자의 건강 증진 • 전처리시설(6기) 구축으로 대기오염물질 저감
수질오염저감	⑥폐수처리시설 약품절감설비	 약품반응성 향상으로 수질오염물질 배출량 저감 적정량 투입으로 폴리머 및 가성소다 약품사용량절감 탈수기 여과포 눈막힘 현상 감소로 탈수기여과포교체주기 감소로 유지관리비절감
폐기물 배출저감	⑦멤브레인 탈수기	• 폐기물 함수율 저감으로 폐기물 배출총량 감소 • 폐기물내 (Cu)농도 높아져 재이용비용 증가 - 도시광산 산업 촉진
기타시설	⑧긴급샤워시설 상수공급배관	• 안전사고시 비상샤워시설 정상가동 준비 확보 • 순수 부족에 따른 제품 불량원인 감소

4. 세부추진일정

No	사업추진내용			진도율	(개월)		
No.			2	3	4	5	6
1	스마트 생태공장 구축						
	1) 온실가스 저감설비 제작 및 설치						
	(열교환기, LED등교체, 인버터블로워) - 현장분석 및 제작 사양 검토						
	- 계약 및 발주						
	- 설비제작 및 설치/시운전						
	2) ICT 제작 및 설치						
	- 현장분석 및 제작 사양 검토						
	- 계약 및 발주						
	- 설비제작 및 설치/시운전						
	3)대기오염저감 설비 제작 및 설치						
	- 현장분석 및 제작 사양 검토						
	- 계약 및 발주						
	- 설비제작 및 설치/시운전						
	4) 수질오염저감 설비 제작 및 설치						
	- 현장분석 및 제작 사양 검토						
	- 계약 및 발주						
	- 설비제작 및 설치/시운전						
	5) 폐기물배출저감 설비 제작 및 설치						
	- 현장분석 및 제작 사양 검토						
	- 계약 및 발주						
	- 설비제작 및 설치/시운전						
	6) 기타시설 설비 제작 및 설치						
	- 현장분석 및 제작 사양 검토						
	- 계약 및 발주						
	- 설비제작 및 설치/시운전						
2	과제 중간 점검						
3	시스템 점검 및 보완수정						
4	과제 최종 점검 및 사업 완료						

^{*} 사업목표 달성을 위해 추진할 내용을 구체적으로 기술하고, 추진내용별 일정을 Bar Chart로 표기 (필요 시 행 추가)

5. 설치현장 설명사진

No.	지원분야	설치시설	개선내용	설치현장
	열교환기 설치		열교환기설치로 FREE COOLING SYSTEM 도입	Top But Fluid Out Primary Fluid Out Primary Fluid In Flu
1	온실가스 저감	LED 등 교체	총 2,636EA 교체	가동 공장 (1~4층)
		인버터 장착 블로워	폐수처리장 집수조 블로워를 인버터방식으로 변경	폐수처리장 1층
2	ICT	모니터링 시스템	오염방지시설 모니터링 및 자동제어시스템 구축	설비없음
3	대기오염	총탄화수소 정치기서비	건조시설배출 충탄화수소 전처리시설 설치	사무실 설비없음
	저감	전처리설비	전자디지철 철지 (6대)	가동 3층

No.	지원분야	설치시설	개선내용	설치현장
4	수질오염 저감	폐수처리 시설 약품저감 설비	가성소다 용해시설 폴리머 용해자동주입장치	폐수처리장
5	폐기물 배출저감	멤브레인 탈수기	자동판이동장치를 장착한 멤브레인탈수기설치	폐수처리장
6	기타시설	긴급샤워 시설 상수공급 배관	긴급샤워시설 공급수를 순수→상수로 변경 배관공사	1.2.3.4충

6. 사업수행참여자 및 업무분장

성명	직위	수행업무	참여율(%)	
000	전무	사업 총괄 (정)	10 %	
000	이사	사업 총괄 (부)	10 %	
000	책임	온실가스 저감-열교환기설치(정)	10 %	
000	선임	온실가스 저감 - LED 등 교체	10 %	
000	선임	대기오염 저감 - 총 탄화수소 전처리 설비	10 %	
	23.01	74 OJ	수행 책임자	00.00
000	선임	온실가스 저감 - 인버터 장착 브로워	30 %	
000	선임	수질오염 저감 - 폐수처리시설 약품절감 설비	10 %	
000	선임	폐기물배출 저감 - 멤브레인 탈수기	10 %	
000	선임	기타시설 - 긴급 샤워시설 상수 공급배관	10 %	
000	사원	온실가스 저감-열교환기설치(부)	5 %	
000	사원	사업 보조자	5 %	

7. 최근 5년간 보조사업 지원이력

보조사업명	사업연도	사업내용	사업규모	보조금액	주관기관	반납 및 환수완료 여부

8. 부정수급 방지대책

본사업에 지원받는 보조금에 대하여 부정수급이 발생하지 않도록 사전에 점검표를 작성하여 예방 및 관리

- 「국고보조금 통합관리지침」(기획재정부공고 제2023-241호)의 규정 준용
- * 부정수급이란「보조금법」제30조1항 및 제2항에 따라 교부결정을 취소하는 경우 와 와 제33조제1항에 따라 보조금을 반환해야하는 경우를 말함.
- 부정수급과 관련한 사례를 참고*하여 점검표를 작성하고 지속적인 모니터링 체계 구축 후 사업 실시
- * 한국행정연구원, 국고보조사업의 부정수급 위험성의 유형분류를 통한 관리체계 효율화 방안 연구(2020)
- 사업 종료 후 부정수급의 발생 여부를 확인할 수 있도록 사후 점검 실시

<부전수급 방지를 위한 사전점검표>

· · · · · · · · · · · · · · · · · · ·					
	구분	점검항목	방지대책		
	허위인력	• 본 사업에 참여하는 인력으로 구성 되었는가?	 실제 사업에 참여하는 사람에게만 보조금 사용 사업 참여 인력 변경시 관리기관에 통보 및 변경 신청 		
허위신청	허위소득재산	• 보조금 수급이 가능한 사업자의 조 건인가?	• 사업 참여 전 서류 확인		
	기타	• 기수행된 사업에 대해서 대금지불 을 본 사업을 통하여 지불하는가?	 개선 전 현장 점검을 통하여 실제 본 사업을 통하여 추진되는 사업 에 한하여 지원 		
가격	부풀리기	 사업 추진시 발생 비용이 과도하게 산정되었는가? 	 보조사업의 가격정보를 데이터화 활용 비교견적을 통하여 적정 비용 산정 		
자부담 회피·대납		• 자부담금의 회피·대납을 목적으로 공사업체 등을 통하여 대납을 요 구하는가?			
허위 결제		보조금 카드를 허위 결제하고 현금 등으로 돌려받는 사항이 있는가?	• 사업비 집행에 관해서 내부적으로 감시체계를 수립하여 부정 사용 금지체계 마련		
목조	외 사용	• 정해진 비목이외 비용이 사용되는 가?	• 보조금 사용에 대해서 외부회계감 사를 통하여 목적외 사용 금지 대 책 마련		

제3장 예상 효과

1. 과제(시설명): ESG경영과 4차 산업혁명을 선도하는 저탄소 친환경 사업장 구축

※엑셀양식(사업신청서) 자동작성

- 엑셀 작성양식(1번째 시트) 중 283행
- 엑셀 출력서식(2번째 시트) 중 237행 ~ 238행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음

2. 예상 효과

※엑셀양식(사업신청서) 작성필요

- 엑셀 작성양식(1번째 시트) 중 162행 ~ 268행
- 엑셀 출력서식(2번째 시트) 중 231행 ~ 275행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음
 - * 예상효과는 정량적으로 산정하여 작성하며, 사업 전 배출량 및 소비량 등 산정에 적용한 자료 에 대한 증빙자료(공인기관 시험성적서 등) 첨부
 - * 단일 설비에 대하여 2개 이상의 분야에 중복하여 효과를 작성할 수 없음
 - * 재생에너지 발전 및 고효율 기기 등 전력 생산과 저감량으로 표기할 수 있는 설비는 전략량 과 온실가스 저감량을 함께 작성
 - * 스마트계측 분야의 발생량 및 달성목표는 경제적 효과(〇〇〇천원)로 작성 가능
 - * 분야별로 다수의 설비를 개선할 경우 개별 설비의 개선효과와 분야별 합계를 모두 작성
 - * 수질분야 발생량(ton/년) = 농도(ma/l) × 유량(Q)의 식을 이용하여 산정
 - * 개선비율은 "목표저감량 ÷ 기존발생량 × 100"으로 작성
 - * 각 분야별 B/C 값은 첨부(경제적 성과 산정표)를 참고하여 산출하되 총 B/C는 연간 B/C에 내구 연한을 곱한 값으로 산출

ex) 저감시설 설치로 연간 B/C = B(연간 절감 비용) / <math>C(N444118)을 산출하고, 시설 내구연한(106)을 곱하여 총 B/C 값 산출

3. 산출근거

3.1 온실가스저감

① 열교환기 설치

사업후 전기에너지 절감량 산정 : 동절기 FREE COOLING SYSTEM 적용기간 절감량 산정

월	시간	일	냉수유량	온도차	취득열량	usRT	kW
巨	시신);iJ	(m³/h)	(°C)	(kcal/h)	usk i	KVV
12월		31			1,696,320,000	560,952	292,761
1월	24	31	456	5	1,532,160,000	506,667	264,429
2월		28			1,696,320,000	560,952	292,761
계	24	90	456	5	4,924,800,000	1,628,571	849,951

- 전기에너지 절감량 : 849,951 kwh /년 (사업후 절감량이므로 사업전 발생량으로 산정하고, 사업후에는 0으로 산정 함)

- 사업전 전력량 = 849,951 kwh /년

- 사업후 전력량 = 0 kwh /년

- 절력 절감량 = 849,951 kwh /년

- 전력량 개선율 : 100 %

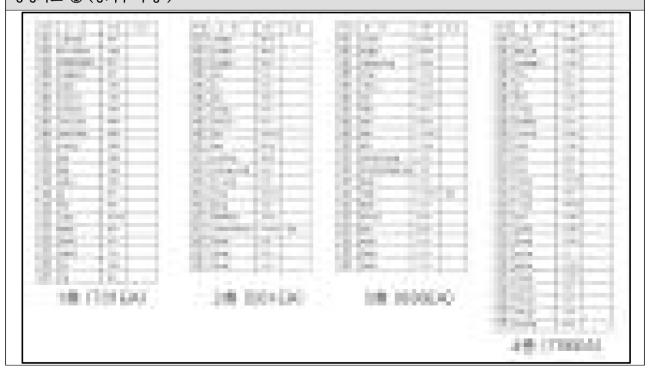
- 온실가스 저감량 = 전력절감량 x 탄소배출계수(tCO₂eq/kwh) = 849,951 kwh /년 x 0.00045941 = 390.5 tCO₂eq/년
- 전력비용절감액 = 전력절감량 x 전력단가(120원/Kwh) = 849,951 kwh /년 x 120원/Kwh = 101,994,120원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 101,994,120원 / 326,700,000원 = 0.31
- 총 B/C = 연간B/C *내구연한 11년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 40101802 열교환기 = 0.31 * 11 = 3.41

② LED 등교체

- 사업전

현재사용등기구	정격용량	수량 (ea)	시간당 사용량(W)	사용시간(h)	사용량 (kwh)
36W*2 등용	64W	2,636	168,704	24	4,048.9/일 1.477.847/년

사업전/후 전력사용량 검증방법 : 2층 163ea 등기구에 전력량계 설치하여 교체전/후 검증


- 사업후

LED 면조명	정격용량	수량 (ea)	시간당 사용량(W)	사용시간(h)	사용량 (kwh)
50W	50W	2,636	131,800	24	3,163.2/일
		·	·		1,154,568/년

- 전력 절감량 = 1,477,847/년 1,154,568/년 = 323,279 kwh /년
- 전력량 개선율 : 21.9 %

- 온실가스 저감량 = 전력절감량 x 탄소배출계수(tCO₂eq/kwh) = 323,279 kwh /년 x 0.00045941 = 148.5 tCO₂eq/년
- 전력비용 절감액 = 전력절감량 x 전력단가(120원/Kwh) = 323,279 kwh /년 x 120원/Kwh = 38,793,480원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 38,793,480원 / 160,000,000원 = 0.24
- 총 B/C = 연간B/C *내구연한 6년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 39111501 형광등기구 = 0.24 * 6 = 1.44

증빙자료-① (등기구 수량)

③ 인버터 블로워

- 1) 인버터설치
 - 사업전 전력량 = 22kw * 24 * 365 = 192,720 kwh /년 (현재 블러워 명판사진 / 산출근거-③첨부)
 - 인버터 60Hz에서 50Hz 24시간 365일가동 적용시
 - = (50/60)^3 * 192,720 kwh /년 = 111,527 kwh /년
 - 전력 절감량 = 192,720 111,527 = 81,193 kwh /년
 - 전력량 개선율 : 42.1 %

- 온실가스 저감량 = 전력절감량 x 탄소배출계수(tCO₂eq/kwh)
 - = 81,193 kwh /년 x 0.00045941 = 37.3 tCO₂eq/년
- 전력비용 절감액 = 전력절감량 x 전력단가(120원/Kwh)
 - = 81,193 kwh /년 x 120원/Kwh = 9,743,160원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 9,743,160원 / 55,560,000원 = 0.18
- 총 B/C = 연간B/C *내구연한 10년

[시행 2022.1.1.] 조달청 고시 내구연한 물품번호 39121006 인버터

= 0.18 * 10 = 1.8

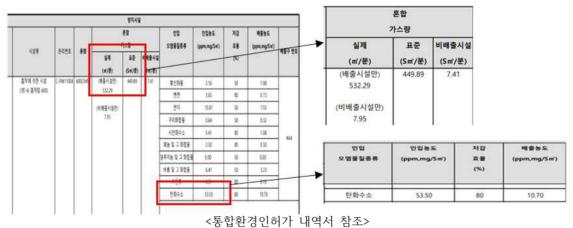
증빙자료-③ (사업 전 발생량) - 명판사진

3.2 ICT

- ① 모니터링시스템
 - . 모니터링 체계 미구축시 투입 필요 예상 인력 : 1인
 - . 노임단가 : 165,545원 (보통인부 노임적용, 2024.1월 기준)
 - . 산출식 : 경제성효과, 투입 대체 노동시간 절감비용
 - = 투입인원 x 투입기간 x 노임단가 = 1인 x 12월/년 x 165,545원/일 x 25일/월
 - = 49,663,500원/년
 - 연간 B/C = 연간 절감 비용 / 시설 설치비용

49,663,500원 / 90,600,000원 = 0.548

- 총 B/C = 연간B/C *내구연한 13년


[시행 2022.1.1.] 조달청 고시 내구연한 물품번호 41113689 종합계측기

= 0.548 * 13 = 7.12

3.3 대기오염 저감

- ① 총탄화수소 전처리시설
 - 사업전/후 측정값 (대기측정기록부 / 증빙자료-④첨부)

구분	인입	출구	저감효율(%)
유량 (m³/분/대)	12	1.2	-
총탄화수소 농도(ppm)	60.6	9.09	87.5
수량 (대)	6	6	-
오염물질량(톤/년)	9.0	0.13	8.87
		1	

- * 사전테스트결과 주 원인물질은 Ethyl Acetate (C4H8O2, M.W 88)로 예상됨.
- * (세미큐어) 건조시설 연결방지시설인 A/C TOWER의 총탄화수소(THC) 농도와 자가측정결과 방지시설 효율 (80%) 역산한 농도중 높은값을 적용함.
- * 전처리시설 전단/후단을 공인기관에 측정하여 검증예정임.
- . 전처리시설 인입 농도 ① 53.5ppm -통합환경자료

②12.12ppm / (1-0.8) = 60.6ppm -자가측정자료중 최대치 적용6)

배출량 = 60.6ppm x 12㎡/분/대 x 6대 x 88m.w/22.4㎡ x 60 x 24 x 365 x10⁻⁹ = 9.0톤/년

. 전처리시설 출구 농도 : 9.09ppm

배출량 = 9.09ppm x 1.2㎡/분/대 x 6대 x 88m.w/22.4㎡ x60 x 24 x 365x10⁻⁹ = 0.13톤/년

. 저감농도 = 인입 - 출구 = 60.6 - 9.09 = 51.51ppm

- . 저감량 = 인입 출구 = 9.0 0.13 = 8.87 톤/년
- 배출량 개선율 : 85 %

- ② 절감비용 산정
 - 1. THC 농도 저감

연간절감비용 = 연간THC 배출저감량 * THC 단위당 피해비용 추정원/ kg⁷⁾ = 8,870kg/년 * 2,825원/kg = 25,057,750원

2. THC 농도 저감에 따른 호흡기질환 발생 절감 전체고용인원중 1% 적용함

455명(현재고용인원) * 0.01 = 4.55명

연간절감비용 = 인원 * 236,060천원/인/월 (1인당 산재보상비용/인8)

= 4.55인 * 236,060천원/인/월 x 12월/년 = 12,888,876원/년

총 절감비용 = 25,057,750원 + 12,888,876원/년 = 37,946,626원/년

- 연간 B/C = 연간 절감 비용 / 시설 설치비용 37,946,626원 / 297,000,000원 = 0.128

- 총 B/C = 연간B/C *내구연한 10년

[시행 2022.1.1.] 조달청 고시 내구연한 물품번호 40161503 집진기

= 0.128 * 10 = 1.28

증빙자료-④ (대기측정기록부)

THC (nom) 200 0(8) 12.12 THC (nom) 200 0(8) 11.9	- 3						-27-74		-7572
1100 Ophid 506 Alex 1515		THC	[nom]	ZVV VISE	12.12	THC	(ppm)	200 0184	11.9

3.4 수질오염저감

- ① 가성소다 용해시설
 - 사업전 가성소다(액상)입고량 (약품입고대장 / 증빙자료-⑤첨부)
 - 수질오염물질 배출량 저감 및 약품 사용량 절감예상

구	<u>보</u>	2023년 (사업전)	사업후	저감효율(%)
٨ ٣١	TOC	61.3	55.17	10
수질	SS	15.0	13.5	10
오염물질	Cu	1.728	1.56	10
액상	사용량	470,750 kg	423,675kg	10
가성소다	단가	420 원/kg	420 원/kg	-
분말	사용량	583 kg	522 kg	10
폴리머	단가	5,150 원/kg	5,150 원/kg	-
약품입고증빙		845,140 kg	798,065kg	ЕЕ
(유독물 /	실적보고)	(가성소다 50% 액상)	(가성소다 50% 액상)	5.5

- 수질오염물질 저감

TOC: 61.3 mg/ℓ x 저감율 10% = 55.17 mg/ℓ

사업전 = 61.3mg/ℓ* 1300톤/일*365일*10⁻⁶ = 29톤/년

사업후 = 55.17mg/ℓ * 1300톤/일*365일*10⁻⁶ = 26.1톤/년

저감량 = (61.3-55.17)mg/ℓ * 1300톤/일*365일*10⁻⁶ = 2.9톤/년

SS: 15 mg/ℓ x 저감율 10% = 13.5 mg/ℓ

사업전 = 15mg/ℓ * 1300톤/일*365일*10⁻⁶ = 7톤/년

사업후 = 13.5mg/ℓ * 1300톤/일*365일*10⁻⁶ = 6.3톤/년

저감량 = (15-13.5)mg/ℓ * 1300톤/일*365일*10⁻⁶ = 0.7톤/년

Cu : 1.728 mg/ℓ x 저감율 10% = 1.56 mg/ℓ

사업전 = 1.728mg/ ℓ * 1300톤/일*365일*10⁻⁶ = 0.82톤/년

사업후 = 1.56mg/ℓ * 1300톤/일*365일*10⁻⁶ = 0.74톤/년

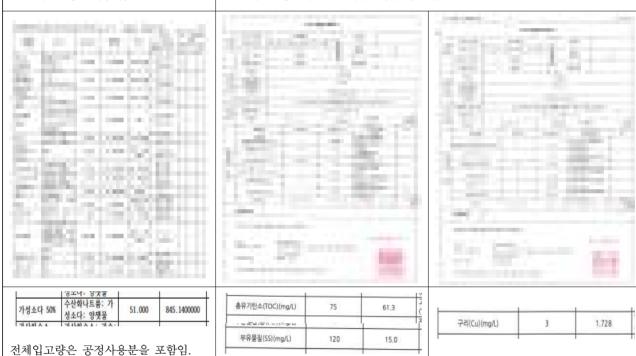
저감량 = (1.728-1.56)mg/ℓ * 1300톤/일*365일*10⁻⁶ = 0.08톤/년

사업전 발생량(합계) = 29 + 7 + 0.82 = 36.82톤/년

사업후 발생량(합계) = 26.1 + 6.3 + 0.74 = 33.14톤/년

사업후 저감량 = 2.9 + 0.7 + 0.08 = 3.68톤/년

- 배출량 개선율 : 10 %


- 약품사용량 저감
 - . 액상가성소다 저감량 = 사업전 사업후 = 470,750 423,675 = 47,075kg/년
 - . 분말폴리머 저감량 = 사업전 사업후 = 583 522 = 61 kg/년
- 경제적 성과 산정
 - . 액상가성소다 저감량 x 단가 = 47.075kg/년 x 420원 = 19.771.500원
 - . 분말폴리머 저감량 x 단가 = 61kg/년 x 5150원 = 314,150원
 - . 합계 =19,771,500 + 314,150 = 20,085,650원
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 20,085,650원 / 75,000,000원 = 0.267
- 총 B/C = 연간B/C *내구연한 10년

[시행 2022.1.1.] 조달청 고시 내구연한 물품번호 47101512 혼합기 및 교반기

= 0.267 * 10 = 2.67

증빙자료-⑤ (약품입고 증빙)

증빙자료-⑥ (수질 방류수 즉정기록부)

3.5 폐기물 저감

- ① 멤브레인 탈수기설치
- 폐수처리오니 배출저감량 및 경제적 성과 산정 [올바로시스템 / 증빙자료-⑦첨부)

구분	2023년	사업후(예상)	저감효율(%)
올바로시스템	766,990 kg	636,601	17%
함수율	77%	60%	17%

- * 상기 함수율은 추정치며, 사업시행전/후 함수율 측정하여 검증예정임.
- 배출량 개선율 : 17 %

- 연간절감비용 = 연간 폐기물배출 저감량 * 폐기물매립에따른 사회적비용 추정 원/톤⁹⁾ = (766,990-636,601) / 1000톤/년 * 95,423원/톤 = 12,442,109원
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 12,442,109원 / 135,000,000원 = 0.092
- 총 B/C = 연간B/C *내구연한 11년

[시행 2022.1.1.] 조달청 고시 내구연한 물품번호 47101525 탈수 및 배수장치

= 0.092 * 11 = 1.012

중빙자료-⑦ 올바로시스템 자료

	위작지각함	Ald
a	775,990,000 kg	

3.6 기타시설

① 비상샤워기 공급배관

- 사업전 : 순수 공급배관에 연결 - 사업후 : 상수도 공급배관에 연결

- 개선율 : 100%

- 안전사고절감에 따른 경제성효과 산정 전체고용인원중 1% 적용함

455명(현재고용인원) * 0.01 = 4.55명

- 연간절감비용 = 인원 * 236,060천원/인/년 (1인당 산재보상비용/인¹⁰⁾ = 4.55인 * 236,060천원/인/년 = 1,074,073원/년
- 연간 B/C = 연간 절감 비용 / 시설 설치비용 1,074,073원 / 49,970,000원 = 0.02
- 총 B/C = 연간B/C *내구연한 8년 [시행 2022.1.1.] 조달청 고시 내구연한 물품번호 49221503 헤드기어를제외한 안전용품] = 0.02 * 7 = 0.14

3.7 고용창출 : 2명

3.8 경제성효과

에너지부문 : 생산장비 등 시설 교체, 보수 등을 통한 효율 개선 적용

- ① 열교환기설치에 따른 전기요금 절감액 = 전력절감량 x 전력단가(120원/Kwh)
 - = 849.951 kwh /년 x 120원/Kwh = 101.994.120원/년 = 101.994천원/년
- ② LED등 교체에 따른 전기요금 절감액 = 전력절감량 x 전력단가(120원/Kwh)
 - = 323,279 kwh /년 x 120원/Kwh = 38,793,480원/년 = 38,793천원/년
- ③ 인버터 장착 블로워 교체에 따른 전기요금 절감액 = 전력절감량 x 전력단가(120원/Kwh) = 81,193 kwh /년 x 120원/Kwh = 9,743,160원/년 = 9,743천원/년

에너지부문 합계 = ① + ② + ③ = 150,530천원/년

고용창출 부문 : 신규채용 2명

계산식 = 고용창출인원 * 40,000천원/인/년 (1인당 부가가치액/인11)

= 2명 * 40,000천원/년 = 80,000천원/년

총합계 = 에너비부분 + 고용창출부문 = 150,530천원/년 + 80,000천원/년

= 230,530천원/년

^{6) 2023.5.22.} 자가측정기록부 참조 (3. 산출근거 中 3.3 대기오염저감 증빙자료-④ 첨부)

⁷⁾ NMVOC 항목적용 / 대기오염물질 사회적 비용 재평가 연구 (KEI, 2015)

⁸⁾ 산업안전예방 / 대기오염물질 사회적 비용 재평가 연구 (KEI, 2015)

⁹⁾ 폐기물매립 / 사회적 비용편익분석 사례 조사 (KIPA, 2018)

¹⁰⁾ 산업안전예방 / 사회적 비용편익분석 사례 조사 (KIPA, 2018)

¹¹⁾ 고용창출비용 / 사회적 비용편익분석 사례 조사 (KIPA, 2018)

4. 기타 기대효과

	 당사는 4차산업 선도 및 발전에 기여하는 반도체용 PCB 생산 전문 기업으로, 제조공정에서의 에너지 비효율적 사용 및 자원 낭비 등이 발생하고 있어 해당 부분에 대한 개선을 위해 지속 적으로 노력하고 있음
개 요	o 에너지 절감설비 도입을 통한 에너지 및 온실가스 저감으로 ESG 경영 선도 기틀을 마련하고자함
	o 친환경 설비 도입을 통한 오염물질 배출 절감 및 환경안전시설 구축 마련기회로 하고자함
	 따라서 본 사업을 통한 친환경 설비 및 시스템 구축을 통해 에너지 사용량 절감 및 폐기물 발생 감축하여 4차 산업혁명을 선도하는저탄소형 친환경 제조공장으로의 전환을 이루고자 함
	· 동절기 에너지 절감시스템(FREE COOLING SYSTEM)의 운영성과를 동종업계 확산/홍보하여 에너지절감 확산의 선두주자 역할하고자 함
	· 건물에너지절감을 위한 등을 LED로 교체를 작업환경(조도)을 쾌적하게 조성하고, 등기구 교체에 따른 폐기물발생량 절감
세부내용	· 총탄화수소 전처리시설시설설치로 대기오염물질 저감 및 작업환경개선 을 통해 안정적인 근로환경개선 마련
, , , , ,	· 약품용해시설 및 자동공급장치설치로 과투입 약품사용량 절감 및 수질 오염물질 저감
	• 멤브레인 탈수기설치로 함수율개선으로 폐기물발생량 감소
	·화학물질 사고시 작업자의 안전물품인 비상샤워기의 상수공급시설 확충 으로 안전분야 설비보완

【첨부】

경제적 성과 산정표(예시)

부문	항목	산식
에너지	○생산장비 등 시설 교체, 보수 등을 통한 효율	· 에너지 절감량 ×에너지단가

	개선	· 생산증가량 × 제품단가
	○고효율 생산 장비 도입을 통한 에너지 사용량 절감	· 개선된 가동횟수 × 횟수별 에너지 사용량
	○생산설비 운전 조건 재설정을 통한 효율 개선	· 에너지 절감량 × 에너지 단기(전력)
	○시설 운영방식 교체를 통한 효율 개선	· 절감 가동시간 × 시간당 에너지 사용량
	○신재생에너지 설치를 통한 에너지 사용요금 절감	· 신재생에너지 발전량 × 에너지 단가(전력)
	○건축물 개선을 통한 냉난방 에너지 효율 개선	· (개선 전 - 개선 후 에너지 사용량) × 에너지 단 가(전력)
	○보일러 등에서의 고온 응축수 재활용을 통한 에너지 절감	· (개선 전 - 개선 후 응축수 재사용량) × 에너지 단가(전력)
	○폐열 재활용을 통한 에너지 절감	· (개선 전 - 개선 후 폐열 사용량) × 에너지 단 가(전력)
	○피크전력 회피에 따른 가동에너지 저감에 따른 비용 절감	· (개선 전 - 개선 후 피크 전력량) × 에너지 단 가(전력)
	○친환경 비닐, 플라스틱 소재 사용으로 폐플 라스틱 소각 폐기물 저감에 따른 온실가스 저 감	· (개선 전 - 개선 후 친환경재료 량) × 온실가스 배출계수
	○냉동기 친환경 냉매 사용으로 온실가스 저감	· (개선 전 - 개선 후 친환경냉매 량) × 온실가스 배출계수
	○전기 공급방식 개선, 변압기 교체 등을 통한 효율 개선	· 에너지 절감량 × 에너지 단가(전력)
	○대기 중 비산되는 원재료 포집 효율 개선	· 원재료 포집 개선량 × 원재료 단가
	○집진기 필터재질 교체를 통한 필터 구매비용 절감	· 집진기 필터 구매 절감 비용
대기	○불꽃감지 센서 장착의 덕트 적용으로 화재 예 방	· 화재 방지에 따른 손실예방 금액
	○집진기 사전 유증기 덕트로 집진기 기능 수명 연장	· 집진기 청소 등 비용 절감
	○용수 재이용 시설 설치 등을 통한 물 사용량 저감	· 물 절감량 × 용수 단가
수질	○용수 포집 시설(빗물재용시설 등) 설치 등을 통한 용수 재이용	· 용수 재이용량 × 용수 단가
	○장비 용수 재활용 시스템 설치 등을 통한 폐수 발생량 저감	· 용수 재활용량 × 용수 단가 · 위탁폐수처리량 × 위탁폐수 단가
폐기물	○폐기물 재활용 시설 도입을 통한 자원순환 효 율 증대	· 폐기물 재활용량 × 원자재 단가
" 1 년	○장비 효율 개선을 통한 제품 불량률 개선	· (개선 전 불량률 - 개선 후 불량률) × 제품 단가

	○신규장비 도입, 장비 개선 등을 통한 화학물질	· 화학물질 절감량 × 화학물질 단가
하나마지	사용량 절감	· 화학물질 폐기기 처리량 × 폐기 단가
화학물질	○화학물질 누액 감지 및 조정재 잔량 모니터링	. 취하면지 배초 에베에 따로 비용 저가
	을 통한 오염 사전 차단	· 화학물질 방출 예방에 따른 비용 절감
작업효율 및	○자아 중 이 게임 이 트립 + 트리카 저가	ι 드 저가네가 > 이렇니
노동력 절감	○작업효율 개선을 통한 노동시간 절감	· 노동 절감시간 × 인건비

※대상 항목과 산식은 협약시 전담기관-지원기업 간 결정

제4장 사업비 사용계획 등

1. 총괄표

※엑셀양식(사업신청서) 자동작성

- 엑셀 작성양식(1번째 시트) 중 354행 ~ 357행
- 엑셀 출력서식(2번째 시트) 중 329행 ~ 332행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가. 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음
- (A)+(B)=100

2. 세부 사용계획

※엑셀양식(사업신청서) **작성필요**

- 엑셀 작성양식(1번째 시트) 중 360행 ~ 444행
- 엑셀 출력서식(2번째 시트) 중 334행 ~ 420행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음
- * 사업계획서 제출 시, 세부 산출내역에 대한 근거자료 제출 필요 (외주제작 견적서 등)
- * 장비·재료비는 건당 1천만원 이상인 경우 비교견적을 포함하여 제출
- * 사업완료 후 사업비 정산 시, 개별 집행건별로 증빙서류를 갖추어 세부내역 입증 필요

제5장

별첨서류

※엑셀양식(사업신청서) **작성필요**

- 엑셀 작성양식(1번째 시트) 중 447행 ~ 491행
- 엑셀 출력서식(2번째 시트) 중 425행 ~ 471행
- * 지원기업 데이터관리 및 사업기간 단축을 위한 엑셀양식 도입
- * 엑셀양식에 작성된 데이터를 기준으로 평가, 행정절차 추진
- * 사업신청 시 제출된 사업신청서의 엑셀양식과 한글양식의 내용이 상이할 경우 발생하는 문제에 대한 모든 책임은 신청기업에 있음

◆ 사업계획서 작성 및 별첨서류 제출 시 유의사항

- 1. 사업계획서에 페이지 기재 필요 ※ 사업계획서 표지를 제외한 '사업계획 요약'부터 1페이지 시작
- 2. 모든 사본 제출서류에는 각 제출서류 해당 기업의 '원본대조필' 날인 필요
- 3. 서류에 날인하는 인장은 (법인, 개인)인감증명서에 있는 인장 또는 직인만 유효 ※ 각종 제출서류에 날인하는 인장을 직인으로 하고자 하는 경우, (법인, 개인)인감증명서 상 인장과 직인을 한 면에 동시 날인한 사용인감계 제출 필요
- 4. 제출서류 중 유효기간이 명시된 제출서류의 경우, <u>사업공고일 기준으로 잔여 유효</u> 기간이 남아있는 경우만 인정
- 5. 서식 변경 및 과년도 양식 사용 금지